Finite size scaling in the two-dimensional XY model and generalized universality

Palma, G; Meyer T.; Labbe, R

Abstract

In recent works [S. T. Bramwell, P. C. W. Holdsworth, and J.-F. Pinton, Nature (London) 396, 552 (1998); S. T. Bramwell et al., Phys. Rev. Lett. 84, 3744 (2000)], a generalized universality has been proposed, linking phenomena as dissimilar as two-dimensional (2D) magnetism and turbulence. To test these ideas, we performed Monte Carlo simulations of the 2D XY model. We found that the shape of the probability distribution function for the magnetization M is non-Gaussian and independent of the system size - in the range of the lattice sizes studied - below the Kosterlitz-Thoules temperature. However, our results suggest that in the full 2D XY model the shape of these distributions has a slight dependence on temperature - for finite volume - below the lattice-shifted critical temperature T*(L). This behavior can be explained by using renormalization group arguments and an extended finite-size scaling analysis, and by the existence of bounds for M. ©2002 The American Physical Society.

Más información

Título según WOS: Finite size scaling in the two-dimensional XY model and generalized universality
Título según SCOPUS: Finite size scaling in the two-dimensional XY model and generalized universality
Título de la Revista: PHYSICAL REVIEW E
Volumen: 66
Número: 2
Editorial: American Physical Society
Fecha de publicación: 2002
Página de inicio: 026108/1
Página final: 026108/5
Idioma: English
DOI:

10.1103/PhysRevE.66.026108

Notas: ISI, SCOPUS