Embedding of level-continuous fuzzy sets on Banach spaces
Abstract
In this paper we present an extension of the Minkowski embedding theorem, showing the existence of an isometric embedding between the class ?c(script x sign) of compact-convex and level-continuous fuzzy sets on a real separable Banach space (script x sign) and script c sign([0,1] × B(script x sign*)), the Banach space of real continuous functions defined on the cartesian product between [0,1] and the unit ball B(script x sign*) in the dual space script x sign*. Also, by using this embedding, we give some applications to the characterization of relatively compact subsets of ?c(script x sign). In particular, an Ascoli-Arzelá type theorem is proved and applied to solving the Cauchy problem ?(t) = f(t,x(t)), x(t0) = x0 on ?c(script x sign). © 2002 Elsevier Science Inc. All rights reserved.
Más información
| Título según WOS: | Embedding of level-continuous fuzzy sets on Banach spaces |
| Título según SCOPUS: | Embedding of level-continuous fuzzy sets on Banach spaces |
| Título de la Revista: | INFORMATION SCIENCES |
| Volumen: | 144 |
| Número: | 01-abr |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2002 |
| Página de inicio: | 227 |
| Página final: | 247 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0020025502001822 |
| DOI: |
10.1016/S0020-0255(02)00182-2 |
| Notas: | ISI, SCOPUS |