Strong solutions of a neutral type equation with finite delay
Abstract
This paper is concerned to study the existence and uniqueness of solution of neutral type differential equations, by using the maximal regularity property of the first-order abstract Cauchy problem with finite delay on Lebesgue spaces defined at the line. The main tools that we use to achieve our goals are an operator-valued version of Miklhin's Fourier multiplier theorem, weighted Sobolev spaces on the real line and fixed point arguments.
Más información
Título según WOS: | Strong solutions of a neutral type equation with finite delay |
Título según SCOPUS: | Strong solutions of a neutral type equation with finite delay |
Título de la Revista: | JOURNAL OF EVOLUTION EQUATIONS |
Volumen: | 19 |
Número: | 2 |
Editorial: | Springer |
Fecha de publicación: | 2019 |
Página de inicio: | 361 |
Página final: | 386 |
Idioma: | English |
DOI: |
10.1007/s00028-019-00478-9 |
Notas: | ISI, SCOPUS |