A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression
Abstract
In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas-Rachford splitting method. Our algorithm performs both function and variable splittings. It sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach leverages the proximity operator of the logistic loss, which is expressed with the generalized Lambert W function. Experiments carried out on standard datasets demonstrate the efficiency of our approach w. r. t. stochastic gradient-like methods.
Más información
| Título según WOS: | A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression |
| Título según SCOPUS: | A random block-coordinate DouglasRachford splitting method with low computational complexity for binary logistic regression |
| Título de la Revista: | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS |
| Volumen: | 72 |
| Número: | 3 |
| Editorial: | Springer |
| Fecha de publicación: | 2019 |
| Página de inicio: | 707 |
| Página final: | 726 |
| Idioma: | English |
| DOI: |
10.1007/s10589-019-00060-6 |
| Notas: | ISI, SCOPUS |