An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem

BARRIOS, T. P.; Bustinza R.; García G.C.; González M.

Abstract

We consider a stabilized mixed finite element method introduced recently for the generalized Stokes problem. The method is obtained by adding suitable least squares terms to the dual-mixed variational formulation of the problem in terms of the velocity and the pseudostress. We obtain a new a posteriori error estimator of residual type and prove that it is reliable and locally efficient. Specifically, we develop an a posteriori error analysis based on the quasi-Helmholtz decomposition which allows us to prove the so-called local efficiency of the estimator with a non-homogeneous boundary condition. Finally, we present some numerical examples that confirm the theoretical properties of our approach. (C) 2019 Elsevier B.V. All rights reserved.

Más información

Título según WOS: An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem
Título según SCOPUS: An a posteriori error analysis of a velocity–pseudostress formulation of the generalized Stokes problem
Título de la Revista: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Volumen: 357
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2019
Página de inicio: 349
Página final: 365
Idioma: English
DOI:

10.1016/j.cam.2019.02.019

Notas: ISI, SCOPUS