On perturbations of Dirac operators with variable magnetic field of constant direction

Richard, S; de Aldecoa, RT

Abstract

We carry out the spectral analysis of matrix valued perturbations of three-dimensional Dirac operators with variable magnetic field of constant direction. Under suitable assumptions on the magnetic field and on the pertubations, we obtain a limiting absorption principle, we prove the absence of singular continuous spectrum in certain intervals and state properties of the point spectrum. Various situations, for example, when the magnetic field is constant, periodic or diverging at infinity, are covered. The importance of an internal-type operator (a two-dimensional Dirac operator) is also revealed in our study. The proofs rely on commutator methods. (C) 2004 American Institute of Physics.

Más información

Título según WOS: ID WOS:000224945900011 Not found in local WOS DB
Título de la Revista: JOURNAL OF MATHEMATICAL PHYSICS
Volumen: 45
Número: 11
Editorial: AMER INST PHYSICS
Fecha de publicación: 2004
Página de inicio: 4164
Página final: 4173
DOI:

10.1063/1.1792933

Notas: ISI