The nature of the essential spectrum in curved quantum waveguides
Abstract
We study the nature of the essential spectrum of the Dirichlet Laplacian in tubes about infinite curves embedded in Euclidean spaces. Under suitable assumptions about the decay of curvatures at infinity, we prove the absence of singular continuous spectrum and state properties of possible embedded eigenvalues. The argument is based on the Mourre conjugate operator method developed for acoustic multistratified domains by Benbernou (1998 J. Math. Anal. Appl. 225 440-60) and Dermenjian et al (1998 Commun. Partial Differ. Equ. 23 141-69). As a technical preliminary, we carry out a spectral analysis for Schrodinger-type operators in straight Dirichlet tubes. We also apply the result to the strips embedded in abstract surfaces.
Más información
Título según WOS: | ID WOS:000222022200014 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL |
Volumen: | 37 |
Número: | 20 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2004 |
Página de inicio: | 5449 |
Página final: | 5466 |
DOI: |
10.1088/0305-4470/37/20/013 |
Notas: | ISI |