The nature of the essential spectrum in curved quantum waveguides

Krejcirik, D; de Aldecoa, RT

Abstract

We study the nature of the essential spectrum of the Dirichlet Laplacian in tubes about infinite curves embedded in Euclidean spaces. Under suitable assumptions about the decay of curvatures at infinity, we prove the absence of singular continuous spectrum and state properties of possible embedded eigenvalues. The argument is based on the Mourre conjugate operator method developed for acoustic multistratified domains by Benbernou (1998 J. Math. Anal. Appl. 225 440-60) and Dermenjian et al (1998 Commun. Partial Differ. Equ. 23 141-69). As a technical preliminary, we carry out a spectral analysis for Schrodinger-type operators in straight Dirichlet tubes. We also apply the result to the strips embedded in abstract surfaces.

Más información

Título según WOS: ID WOS:000222022200014 Not found in local WOS DB
Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
Volumen: 37
Número: 20
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2004
Página de inicio: 5449
Página final: 5466
DOI:

10.1088/0305-4470/37/20/013

Notas: ISI