Lie Algebras Attached to Clifford Modules and Simple Graded Lie Algebras

Furutani, Kenro; Godoy Molina, Mauricio; Markina, Irina; Morimoto, Tohru; Vasil’ev, Alexander

Keywords: root system, Clifford algebra, Simple Lie algebras, Dynkin diagram, graded Lie algebras, parabolic subalgebras, H -type algebra, non-degenerate bilinear form

Abstract

We study possible cases of complex simple graded Lie algebras of depth 2, which are the Tanaka prolongations of pseudo H -type Lie algebras arising through representation of Clifford algebras. We show that the complex simple Lie algebras of type Bn with |2|-grading do not contain non-Heisenberg pseudo H -type Lie algebras as their negative nilpotent part, while the complex simple Lie algebras of types An, Cn and Dn provide such a possibility. Among exceptional algebras only F4 and E6 contain non-Heisenberg pseudo H-type Lie algebras as their negative part of |2|-grading. An analogous question addressed to real simple graded Lie algebras is more delicate, and we give results revealing the main differences with the complex situation.

Más información

Título de la Revista: Journal of Lie Theory
Volumen: 28
Número: 3
Editorial: Heldermann Verlag
Fecha de publicación: 2018
Página de inicio: 843
Página final: 864
Idioma: English
Notas: In Web of Science Core Collection