Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian
Abstract
We study the asymptotic behaviour of nonnegative solutions to: ut = pum using an entropy estimate based on a sub-family of the Gagliardo-Nirenberg inequalities - or, in the limit case m = (p - 1)-1, on a logarithmic Sobolev inequality in W1,P - for which optimal functions are known. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.
Más información
| Título según WOS: | Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian |
| Título según SCOPUS: | Nonlinear diffusions and optimal constants in Sobolev type inequalities: Asymptotic behaviour of equations involving the p-Laplacian [Diffusions non linéaires et constantes optimales dans des inégalités de type Sobolev: Comportement asymptotique d'équations faisant intervenir le p-Laplacien] |
| Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
| Volumen: | 334 |
| Número: | 5 |
| Editorial: | ACAD SCIENCES |
| Fecha de publicación: | 2002 |
| Página de inicio: | 365 |
| Página final: | 370 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S1631073X02022252 |
| DOI: |
10.1016/S1631-073X(02)02225-2 |
| Notas: | ISI, SCOPUS |