Continuous solutions and approximating scheme for fractional Dirichlet problems on Lipschitz domains

Felmer, Patricio; Topp, Erwin

Abstract

In this paper,we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Holder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on Omega. Both results are extended to an ample class of fully nonlinear operators.

Más información

Título según WOS: Continuous solutions and approximating scheme for fractional Dirichlet problems on Lipschitz domains
Título según SCOPUS: Continuous solutions and approximating scheme for fractional Dirichlet problems on Lipschitz domains
Título de la Revista: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
Volumen: 149
Número: 2
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2019
Página de inicio: 533
Página final: 560
Idioma: English
DOI:

10.1017/prm.2018.38

Notas: ISI, SCOPUS