A mixed-FEM formulation for nonlinear incompressible elasticity in the plane
Abstract
This article deals with an expanded mixed finite element formulation, based on the Hu-Washizu principle, for a nonlinear incompressible material in the plane. We follow our related previous works and introduce both the stress and the strain tensors as further unknowns, which yields a two-fold saddle point operator equation as the corresponding variational formulation. A slight generalization of the classical Babuška-Brezzi's theory is applied to prove unique solvability of the continuous and discrete formulations, and to derive the corresponding a priori error analysis. An extension of the well-known PEERS space is used to define an stable associated Galerkin scheme. Finally, we provide an a posteriori error analysis based on the classical Bank-Weiser approach. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 105-128, 2002.
Más información
| Título según WOS: | A mixed-FEM formulation for nonlinear incompressible elasticity in the plane |
| Título según SCOPUS: | A mixed-FEM formulation for nonlinear incompressible elasticity in the plane |
| Título de la Revista: | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
| Volumen: | 18 |
| Número: | 1 |
| Editorial: | Wiley |
| Fecha de publicación: | 2002 |
| Página de inicio: | 105 |
| Página final: | 128 |
| Idioma: | English |
| URL: | http://doi.wiley.com/10.1002/num.1046 |
| DOI: |
10.1002/num.1046 |
| Notas: | ISI, SCOPUS |