Composite likelihood estimation for a Gaussian process under fixed domain asymptotics

Bachoc, Francois; Bevilacqua, Moreno; Velandia, Daira

Abstract

We study the problem of estimating the covariance parameters of a one-dimensional Gaussian process with exponential covariance function under fixed-domain asymptotics. We show that the weighted pairwise maximum likelihood estimator of the microergodic parameter can be consistent or inconsistent. This depends on the range of admissible parameter values in the likelihood optimization. On the other hand, the weighted pairwise conditional maximum likelihood estimator is always consistent. Both estimators are also asymptotically Gaussian when they are consistent. Their asymptotic variances are larger or strictly larger than that of the maximum likelihood estimator. A simulation study is presented in order to compare the finite sample behavior of the pairwise likelihood estimators with their asymptotic distributions. For more general covariance functions, an additional inconsistency result is provided, for the weighted pairwise maximum likelihood estimator of a variance parameter. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Composite likelihood estimation for a Gaussian process under fixed domain asymptotics
Título según SCOPUS: Composite likelihood estimation for a Gaussian process under fixed domain asymptotics
Título de la Revista: JOURNAL OF MULTIVARIATE ANALYSIS
Volumen: 174
Editorial: ELSEVIER INC
Fecha de publicación: 2019
Idioma: English
DOI:

10.1016/j.jmva.2019.104534

Notas: ISI, SCOPUS