Nondegeneracy and the Jacobi Fields of Rotationally Symmetric Solutions to the Cahn-Hillard Equation

Hernandez, Alvaro; Kowalczyk, Michal

Abstract

In this paper we study rotationally symmetric solutions of the Cahn-Hilliard equation in R-3 constructed in [13] by the authors. These solutions form a one-parameter family analog to the family of the Delaunay surfaces, and in fact the zero level sets of their blowdowns approach these surfaces. Presently, we go a step further and show that their stability properties are inherited from the stability properties of the Delaunay surfaces. Our main result states that the rotationally symmetric solutions are non degenerate and that they have exactly six Jacobi fields of temperate growth coming from the natural invariances of the problem (three translations and two rotations) and the variation of the Delaunay parameter.

Más información

Título según WOS: Nondegeneracy and the Jacobi Fields of Rotationally Symmetric Solutions to the Cahn-Hillard Equation
Título según SCOPUS: Nondegeneracy and the Jacobi fields of rotationally symmetric solutions to the Cahn-Hillard equation
Título de la Revista: INDIANA UNIVERSITY MATHEMATICS JOURNAL
Volumen: 68
Número: 4
Editorial: INDIANA UNIV MATH JOURNAL
Fecha de publicación: 2019
Página de inicio: 1047
Página final: 1087
Idioma: English
DOI:

10.1512/iumj.2019.68.7718

Notas: ISI, SCOPUS