Maximal solution of the Liouville equation in doubly connected domains
Abstract
In this paper we consider the Liouville equation Delta u+lambda(2)e(u) = 0 with Dirichlet boundary conditions in a two dimensional, doubly connected domain Omega. We show that there exists a simple, closed curve gamma subset of Omega such that for a sequence lambda(n) -> 0 and a sequence of solutions u(n) it holds u(n)/log 1/lambda(n) -> H, where H is a harmonic function in Omegagamma and lambda(2)(n)/log 1/lambda(n) integral(Omega)e(un) dx -> 8 pi c(Omega), where c(Omega) is a constant depending on the conformal class of Omega only. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Maximal solution of the Liouville equation in doubly connected domains |
Título según SCOPUS: | Maximal solution of the Liouville equation in doubly connected domains |
Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
Volumen: | 277 |
Número: | 9 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2019 |
Página de inicio: | 2997 |
Página final: | 3050 |
Idioma: | English |
DOI: |
10.1016/j.jfa.2019.06.013 |
Notas: | ISI, SCOPUS |