Maximal solution of the Liouville equation in doubly connected domains

Kowalczyk, Michal; Pistoia, Angela; Vaira, Giusi

Abstract

In this paper we consider the Liouville equation Delta u+lambda(2)e(u) = 0 with Dirichlet boundary conditions in a two dimensional, doubly connected domain Omega. We show that there exists a simple, closed curve gamma subset of Omega such that for a sequence lambda(n) -> 0 and a sequence of solutions u(n) it holds u(n)/log 1/lambda(n) -> H, where H is a harmonic function in Omegagamma and lambda(2)(n)/log 1/lambda(n) integral(Omega)e(un) dx -> 8 pi c(Omega), where c(Omega) is a constant depending on the conformal class of Omega only. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Maximal solution of the Liouville equation in doubly connected domains
Título según SCOPUS: Maximal solution of the Liouville equation in doubly connected domains
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 277
Número: 9
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2019
Página de inicio: 2997
Página final: 3050
Idioma: English
DOI:

10.1016/j.jfa.2019.06.013

Notas: ISI, SCOPUS