Adaptive density estimation on bounded domains

Bertin, Karine; El Kolei, Salima; Klutchnikoff, Nicolas

Abstract

We study the estimation, in L-p-norm, of density functions defined on [0, 1](d). We construct a new family of kernel density estimators that do not suffer from the so-called boundary bias problem and we propose a data-driven procedure based on the Goldenshluger and Lepski approach that jointly selects a kernel and a bandwidth. We derive two estimators that satisfy oracle-type inequalities. They are also proved to be adaptive over a scale of anisotropic or isotropic Sobolev-Slobodetskii classes (which are particular cases of Besov or Sobolev classical classes). The main interest of the isotropic procedure is to obtain adaptive results without any restriction on the smoothness parameter.

Más información

Título según WOS: Adaptive density estimation on bounded domains
Título según SCOPUS: Adaptive density estimation on bounded domains
Título de la Revista: ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
Volumen: 55
Número: 4
Editorial: INST MATHEMATICAL STATISTICS
Fecha de publicación: 2019
Página de inicio: 1916
Página final: 1947
Idioma: English
DOI:

10.1214/18-AIHP938

Notas: ISI, SCOPUS - ISI SCOPUS