Submersions and curves of constant geodesic curvature

Molina, M. Godoy; Grong, E.; Markina, I

Abstract

Considering Riemannian submersions, we find necessary and sufficient conditions for when sub-Riemannian normal geodesics project to curves of constant first geodesic curvature or constant first and vanishing second geodesic curvature. We describe a canonical extension of the sub-Riemannian metric and study geometric properties of the obtained Riemannian manifold. This work contains several examples illustrating the results.

Más información

Título según WOS: Submersions and curves of constant geodesic curvature
Título según SCOPUS: Submersions and curves of constant geodesic curvature
Título de la Revista: MATHEMATISCHE NACHRICHTEN
Volumen: 292
Número: 9
Editorial: WILEY-V C H VERLAG GMBH
Fecha de publicación: 2019
Página de inicio: 1956
Página final: 1971
Idioma: English
DOI:

10.1002/mana.201800352

Notas: ISI, SCOPUS