Submersions and curves of constant geodesic curvature
Abstract
Considering Riemannian submersions, we find necessary and sufficient conditions for when sub-Riemannian normal geodesics project to curves of constant first geodesic curvature or constant first and vanishing second geodesic curvature. We describe a canonical extension of the sub-Riemannian metric and study geometric properties of the obtained Riemannian manifold. This work contains several examples illustrating the results.
Más información
| Título según WOS: | Submersions and curves of constant geodesic curvature |
| Título según SCOPUS: | Submersions and curves of constant geodesic curvature |
| Título de la Revista: | MATHEMATISCHE NACHRICHTEN |
| Volumen: | 292 |
| Número: | 9 |
| Editorial: | WILEY-V C H VERLAG GMBH |
| Fecha de publicación: | 2019 |
| Página de inicio: | 1956 |
| Página final: | 1971 |
| Idioma: | English |
| DOI: |
10.1002/mana.201800352 |
| Notas: | ISI, SCOPUS |