Bubble-tower radial solutions in the slightly supercritical Brezis-Nirenberg problem
Abstract
In this paper, we consider the Brezis-Nirenberg problem in dimension N?4, in the supercritical case. We prove that if the exponent gets close to N+2/N-2 and if, simultaneously, the bifurcation parameter tends to zero at the appropriate rate, then there are radial solutions which behave like a superposition of bubbles, namely solutions of the form A figure is presented. where Mj ? + ? and Mj = o(Mj+1) for all j. These solutions lie close to turning points "to the right" of the associated bifurcation diagram. © 2003 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Bubble-tower radial solutions in the slightly supercritical Brezis-Nirenberg problem |
| Título según SCOPUS: | "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem |
| Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
| Volumen: | 193 |
| Número: | 2 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2003 |
| Página de inicio: | 280 |
| Página final: | 306 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039603001517 |
| DOI: |
10.1016/S0022-0396(03)00151-7 |
| Notas: | ISI, SCOPUS |