Geodetic determination of relative plate motion and crustal deformation across the Scotia-South America plate boundary in eastern Tierra del Fuego

Smalley, R.; Kendrick, E; Bevis, MG; Dalziel, IWD; Taylor, F; Lauria, E; Barriga, R; Casassa, G.; Olivero, E; Piana, E.

Abstract

Global Positioning System (GPS) measurements provide the first direct measurement of plate motion and crustal deformation across the Scotia-South America transform plate boundary in Tierra del Fuego. This plate boundary accommodates a part of the overall motion between South America and Antarctica. The subaerial section of the plate boundary in Tierra del Fuego, about 160 km in length, is modeled as a two dimensional, strike-slip plate boundary with east-west strike. Along the Magallanes-Fagnano fault system, the principal fault of this portion of the plate boundary, relative plate motion is left-lateral strikeslip on a vertical fault at 6.6 ± 1.3 mm/year based on an assumed locking depth of 15 km. The site velocities on the Scotia Plate side are faster than the relative velocity by an additional 1-2 mm/yr, suggesting there may be a wider region of diffuse left-lateral deformation in southern Patagonia. The northsouth components of the velocities, however, do not support the existence of active, large-scale transpression or transtension between the South America and Scotia plates along this section of the plate boundary. © 2003 by the American Geophysical Union.

Más información

Título según WOS: Geodetic determination of relative plate motion and crustal deformation across the Scotia-South America plate boundary in eastern Tierra del Fuego
Título según SCOPUS: Geodetic determination of relative plate motion and crustal deformation across the Scotia-South America plate boundary in eastern Tierra del Fuego
Título de la Revista: GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volumen: 4
Número: 9
Editorial: AMER GEOPHYSICAL UNION
Fecha de publicación: 2003
Idioma: English
DOI:

10.1029/2002GC000446

Notas: ISI, SCOPUS