Generalization of the electrostatic potential function for an infinite charge distribution
Abstract
The asymptotic conditions needed to define the electrostatic potential due to an infinite charge distribution are studied in detail. It is shown that if the charge distribution decreases faster than the square of the distance when |r| goes to infinity, the convolution integral defining the potential exists, goes to zero as |r| goes to infinity, and therefore allows the calculation of the electric potential function at any point in space, even if the total charge is infinite. We illustrate the calculation of the electric potential with a simple example of a spherically symmetric infinite charge distribution. © 2003 American Association of Physics Teachers.
Más información
Título según WOS: | Generalization of the electrostatic potential function for an infinite charge distribution |
Título según SCOPUS: | Generalization of the electrostatic potential function for an infinite charge distribution |
Título de la Revista: | AMERICAN JOURNAL OF PHYSICS |
Volumen: | 71 |
Número: | 8 |
Editorial: | AMER ASSOC PHYSICS TEACHERS |
Fecha de publicación: | 2003 |
Página de inicio: | 813 |
Página final: | 815 |
Idioma: | English |
URL: | http://link.aip.org/link/AJPIAS/v71/i8/p813/s1&Agg=doi |
DOI: |
10.1119/1.1574039 |
Notas: | ISI, SCOPUS |