A posteriori error estimates for the finite element approximation of eigenvalue problems
Abstract
This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.
Más información
| Título según WOS: | A posteriori error estimates for the finite element approximation of eigenvalue problems |
| Título según SCOPUS: | A posteriori error estimates for the finite element approximation of eigenvalue problems |
| Título de la Revista: | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES |
| Volumen: | 13 |
| Número: | 8 |
| Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
| Fecha de publicación: | 2003 |
| Página de inicio: | 1219 |
| Página final: | 1229 |
| Idioma: | English |
| URL: | http://www.worldscientific.com/doi/abs/10.1142/S0218202503002878 |
| DOI: |
10.1142/S0218202503002878 |
| Notas: | ISI, SCOPUS |