Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems
Abstract
The class of linearly recurrent Cantor systems contains the substitution subshifts and some odometers. For substitution subshifts, measure-theoretical and continuous eigenvalues are the same. It is natural to ask whether this rigidity property remains true for the class of linearly recurrent Cantor systems. Partial answers are given to this question.
Más información
Título según WOS: | Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems |
Título según SCOPUS: | Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems |
Título de la Revista: | JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES |
Volumen: | 67 |
Número: | 3 |
Editorial: | Wiley |
Fecha de publicación: | 2003 |
Página de inicio: | 790 |
Página final: | 804 |
Idioma: | English |
URL: | http://jlms.oxfordjournals.org/cgi/doi/10.1112/S0024610703004320 |
DOI: |
10.1112/S0024610703004320 |
Notas: | ISI, SCOPUS |