Matching points with disks with a common intersection

Huemer C.; Pérez-Lantero P.; Seara C.; Silveira, R. I.

Abstract

We consider matchings with diametral disks between two sets of points R and B. More precisely, for each pair of matched points p is an element of R and q is an element of B, we consider the disk through p and q with the smallest diameter. We prove that for any R and B such that vertical bar RS vertical bar = vertical bar B vertical bar, there exists a perfect matching such that the diametral disks of the matched point pairs have a common intersection. In fact, our result is stronger, and shows that a maximum weight perfect matching has this property. (C) 2019 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Matching points with disks with a common intersection
Título según SCOPUS: Matching points with disks with a common intersection
Título de la Revista: DISCRETE MATHEMATICS
Volumen: 342
Número: 7
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2019
Página de inicio: 1885
Página final: 1893
Idioma: English
DOI:

10.1016/j.disc.2019.03.003

Notas: ISI, SCOPUS