Approximately Coloring Graphs Without Long Induced Paths
Abstract
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on t vertices, for fixed t. We propose an algorithm that, given a 3-colorable graph without an induced path on t vertices, computes a coloring with max 5, 2 t-1 2 -2 many colors. If the input graph is triangle-free, we only need max 4, t-1 2 + 1 many colors. The running time of our algorithm is O((3t-2 + t2) m + n) if the input graph has n vertices and m edges.
Más información
| Título según WOS: | Approximately Coloring Graphs Without Long Induced Paths | 
| Título según SCOPUS: | Approximately Coloring Graphs Without Long Induced Paths | 
| Título de la Revista: | ALGORITHMICA | 
| Volumen: | 81 | 
| Número: | 8 | 
| Editorial: | Springer | 
| Fecha de publicación: | 2019 | 
| Página de inicio: | 3186 | 
| Página final: | 3199 | 
| Idioma: | English | 
| DOI: | 
 10.1007/s00453-019-00577-6  | 
| Notas: | ISI, SCOPUS |