Fundamental solutions for discrete dynamical systems involving the fractional Laplacian
Abstract
We prove representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. Our focus is in the problem Dt beta u(n,t)=-(-Delta d)alpha u(n,t)+g(n,t), where 0
Más información
Título según WOS: | Fundamental solutions for discrete dynamical systems involving the fractional Laplacian |
Título según SCOPUS: | Fundamental solutions for discrete dynamical systems involving the fractional Laplacian |
Título de la Revista: | MATHEMATICAL METHODS IN THE APPLIED SCIENCES |
Volumen: | 42 |
Número: | 14 |
Editorial: | Wiley |
Fecha de publicación: | 2019 |
Página de inicio: | 4688 |
Página final: | 4711 |
Idioma: | English |
DOI: |
10.1002/mma.5685 |
Notas: | ISI, SCOPUS |