On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces
Abstract
The property of continuous differentiability with Lipschitz derivative of the square distance function is known to be a characterization of prox-regular sets. We show in this paper that the property of higher-order continuous differentiability with locally uniformly continuous last derivative of the square distance function near a point of a set characterizes, in Hilbert spaces, that the set is a submanifold with the same differentiability property near the point.
Más información
| Título según WOS: | On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces |
| Título según SCOPUS: | On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces |
| Título de la Revista: | JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS |
| Volumen: | 182 |
| Número: | 1 |
| Editorial: | SPRINGER/PLENUM PUBLISHERS |
| Fecha de publicación: | 2019 |
| Página de inicio: | 189 |
| Página final: | 210 |
| Idioma: | English |
| DOI: |
10.1007/s10957-019-01473-3 |
| Notas: | ISI, SCOPUS |