Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control
Abstract
In this paper we stabilize the linear Kuramoto-Sivashinsky equation by means of a delayed boundary control. From the spectral decomposition of the spatial operator associated to the equation, we find that there is a finite number of unstable eigenvalues. After applying the Artstein transform to deal with the delay phenomenon, we design a feedback law based on the pole-shifting theorem to exponential stabilize the finite-dimensional system associated to the unstable eigenvalues. Then, thanks to the use of a Lyapunov function, we prove that the same feedback law exponential stabilize the original unstable infinite-dimensional system. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control |
Título según SCOPUS: | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control |
Título de la Revista: | IFAC PAPERSONLINE |
Volumen: | 52 |
Número: | 2 |
Editorial: | Elsevier |
Fecha de publicación: | 2019 |
Página de inicio: | 70 |
Página final: | 75 |
Idioma: | English |
DOI: |
10.1016/j.ifacol.2019.08.013 |
Notas: | ISI, SCOPUS |