Incorporating variable viscosity in vorticity-based formulations for Brinkman equations
Abstract
In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity, and pressure with non-constant viscosity. The analysis is performed by the classical BabuSla-Brezzi theory, and we state that any inf-sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates, which are further confirmed through computational examples. (C) 2019 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Más información
| Título según WOS: | Incorporating variable viscosity in vorticity-based formulations for Brinkman equations |
| Título según SCOPUS: | Incorporating variable viscosity in vorticity-based formulations for Brinkman equations [Intégration de la viscosité variable dans des formulations en tourbillon pour les équations de Brinkman] |
| Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
| Volumen: | 357 |
| Número: | 6 |
| Editorial: | ACAD SCIENCES |
| Fecha de publicación: | 2019 |
| Página de inicio: | 552 |
| Página final: | 560 |
| Idioma: | English |
| DOI: |
10.1016/j.crma.2019.06.006 |
| Notas: | ISI, SCOPUS |