An increasing sequence of lower bounds for the Estrada index of graphs and matrices
Abstract
Let G be a graph on n vertices and lambda(1) >= lambda(2) >= ... lambda(n), its eigenvalues. The Estrada index of G is defined as EE(G) = Sigma(n)(i=1) e(lambda i). In this work, we use an increasing sequence converging to the lambda(1) to obtain an increasing sequence of lower bounds for EE(G). In addition, we generalize this succession for the Estrada index of an arbitrary symmetric nonnegative matrix. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | An increasing sequence of lower bounds for the Estrada index of graphs and matrices |
Título según SCOPUS: | An increasing sequence of lower bounds for the Estrada index of graphs and matrices |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 580 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2019 |
Página de inicio: | 200 |
Página final: | 211 |
Idioma: | English |
DOI: |
10.1016/j.laa.2019.06.018 |
Notas: | ISI, SCOPUS |