An increasing sequence of lower bounds for the Estrada index of graphs and matrices

Carmona J.R.; Rodríguez J.

Abstract

Let G be a graph on n vertices and lambda(1) >= lambda(2) >= ... lambda(n), its eigenvalues. The Estrada index of G is defined as EE(G) = Sigma(n)(i=1) e(lambda i). In this work, we use an increasing sequence converging to the lambda(1) to obtain an increasing sequence of lower bounds for EE(G). In addition, we generalize this succession for the Estrada index of an arbitrary symmetric nonnegative matrix. (C) 2019 Elsevier Inc. All rights reserved.

Más información

Título según WOS: An increasing sequence of lower bounds for the Estrada index of graphs and matrices
Título según SCOPUS: An increasing sequence of lower bounds for the Estrada index of graphs and matrices
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 580
Editorial: Elsevier Science Inc.
Fecha de publicación: 2019
Página de inicio: 200
Página final: 211
Idioma: English
DOI:

10.1016/j.laa.2019.06.018

Notas: ISI, SCOPUS