A Structural Model of the Inactivation Gate of Voltage-Activated Potassium Channels

Vergara-Jaque A.; Palma-Cerda F.; Lowet A.S.; de la Cruz Landrau A.; Poblete H.; Sukharev A.; Comer J.; Holmgren M.

Abstract

After opening, the Shakervoltage-gated potassium (K-v) channel rapidly inactivates when one of its four N-termini enters and occludes the channel pore. Although it is known that the tip of the N-terminus reaches deep into the central cavity, the conformation adopted by this domain during inactivation and the nature of its interactions with the rest of the channel remain unclear. Here, we use molecular dynamics simulations coupled with electrophysiology experiments to reveal the atomic-scale mechanisms of inactivation. We find that the first six amino acids of the N-terminus spontaneously enter the central cavity in an extended conformation, establishing hydrophobic contacts with residues lining the pore. A second portion of the N-terminus, consisting of a long 24 amino acid alpha-helix, forms numerous polar contacts with residues in the intracellular entryway of the T1 domain. Double mutant cycle analysis revealed a strong relationship between predicted interatomic distances and empirically observed thermodynamic coupling, establishing a plausible model of the transition of K-v channels to the inactivated state.

Más información

Título según WOS: A Structural Model of the Inactivation Gate of Voltage-Activated Potassium Channels
Título según SCOPUS: A Structural Model of the Inactivation Gate of Voltage-Activated Potassium Channels
Título de la Revista: BIOPHYSICAL JOURNAL
Volumen: 117
Número: 2
Editorial: Cell Press
Fecha de publicación: 2019
Página de inicio: 377
Página final: 387
Idioma: English
DOI:

10.1016/j.bpj.2019.06.008

Notas: ISI, SCOPUS