The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin's Method
Abstract
While it is classical to consider the solution of the convection-diffusion-reaction equation in the Hilbert space H-0(1)(Omega), the Banach Sobolev space W-0(1,q) (Omega), 1 < q < infinity, is more general allowing more irregular solutions. In this paper we present a well-posedness theory for the convection-diffusion-reaction equation in the W-0(1,q) (Omega)-W-0(1,q') (Omega) functional setting, 1/q +1/q' = 1. The theory is based on directly establishing the inf-sup conditions. Apart from a standard assumption on the advection and reaction coefficients, the other key assumption pertains to a subtle regularity requirement for the standard Laplacian. An elementary consequence of the well-posedness theory is the stability and convergence of Galerkin's method in this setting, for a diffusion-dominated case and under the assumption of W-1,W-q'-stability of the H-0(1)-projector.
Más información
Título según WOS: | The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin's Method |
Título según SCOPUS: | The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin's Method |
Título de la Revista: | COMPUTATIONAL METHODS IN APPLIED MATHEMATICS |
Volumen: | 19 |
Número: | 3 |
Editorial: | WALTER DE GRUYTER GMBH |
Fecha de publicación: | 2019 |
Página de inicio: | 503 |
Página final: | 522 |
Idioma: | English |
DOI: |
10.1515/cmam-2018-0198 |
Notas: | ISI, SCOPUS |