An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks

Jacobs C.; Collett T.; Glazebrook K.; Buckley-Geer E.; Diehl, H. T.; Lin H.; McCarthy C.; Qin A.K.; Odden C.; Escudero M.C.; Dial P.; Yung V.J.; Gaitsch S.; Pellico A.; Lindgren K.A.; et. al.

Abstract

We search Dark Energy Survey (DES) Year 3 imaging for galaxy-galaxy strong gravitational lenses using convolutional neural networks, extending previous work with new training sets and covering a wider range of redshifts and colors. We train two neural networks using images of simulated lenses, then use them to score postage-stamp images of 7.9 million sources from DES chosen to have plausible lens colors based on simulations. We examine 1175 of the highest-scored candidates and identify 152 probable or definite lenses. Examining an additional 20,000 images with lower scores, we identify a further 247 probable or definite candidates. After including 86 candidates discovered in earlier searches using neural networks and 26 candidates discovered through visual inspection of blue-near-red objects in the DES catalog, we present a catalog of 511 lens candidates.

Más información

Título según WOS: An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks
Título según SCOPUS: An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in des Using Convolutional Neural Networks
Título de la Revista: ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volumen: 243
Número: 1
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2019
Idioma: English
DOI:

10.3847/1538-4365/ab26b6

Notas: ISI, SCOPUS