ON THE UNIQUENESS OF BOUND STATE SOLUTIONS OF A SEMILINEAR EQUATION WITH WEIGHTS
Abstract
We consider radial solutions of a general elliptic equation involving a weighted Laplace operator. We establish the uniqueness of the radial bound state solutions to div(A del v) + Bf(v) = 0, lim(vertical bar x vertical bar ->+infinity) v(x) 0, x is an element of R-n, (P) n > 2, where A and B are two positive, radial, smooth functions defined on R-n {0}. We assume that the nonlinearity f is an element of C(-c, c), 0 < c <= infinity is an odd function satisfying some convexity and growth conditions, and has a zero at b > 0, is non positive and not identically 0 in (0, b), positive in (b, c), and is differentiable in (0, c).
Más información
| Título según WOS: | ON THE UNIQUENESS OF BOUND STATE SOLUTIONS OF A SEMILINEAR EQUATION WITH WEIGHTS |
| Título según SCOPUS: | On the uniqueness of bound state solutions of a semilinear equation with weights |
| Título de la Revista: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS |
| Volumen: | 39 |
| Número: | 11 |
| Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
| Fecha de publicación: | 2019 |
| Página de inicio: | 6761 |
| Página final: | 6784 |
| Idioma: | English |
| DOI: |
10.3934/dcds.2019294 |
| Notas: | ISI, SCOPUS |