DEGREE CONDITIONS FOR EMBEDDING TREES
Abstract
We conjecture that every graph of minimum degree at least k/2 and maximum degree at least 2k contains all trees with k edges as subgraphs. We prove an approximate version of this conjecture for trees of bounded degree and dense host graphs. Our result relies on a general embedding tool for embedding trees into graphs of certain structure. This tool also has implications for the Erdos-Sos conjecture and the 2/3-conjecture. We prove an approximate version of both conjectures for bounded degree trees and dense host graphs.
Más información
Título según WOS: | DEGREE CONDITIONS FOR EMBEDDING TREES |
Título según SCOPUS: | Degree conditions for embedding trees |
Título de la Revista: | SIAM JOURNAL ON DISCRETE MATHEMATICS |
Volumen: | 33 |
Número: | 3 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2019 |
Página de inicio: | 1521 |
Página final: | 1555 |
Idioma: | English |
DOI: |
10.1137/18M1210861 |
Notas: | ISI, SCOPUS |