DEGREE CONDITIONS FOR EMBEDDING TREES

Besomi G.; Pavez-Signe M.; Stein M.

Abstract

We conjecture that every graph of minimum degree at least k/2 and maximum degree at least 2k contains all trees with k edges as subgraphs. We prove an approximate version of this conjecture for trees of bounded degree and dense host graphs. Our result relies on a general embedding tool for embedding trees into graphs of certain structure. This tool also has implications for the Erdos-Sos conjecture and the 2/3-conjecture. We prove an approximate version of both conjectures for bounded degree trees and dense host graphs.

Más información

Título según WOS: DEGREE CONDITIONS FOR EMBEDDING TREES
Título según SCOPUS: Degree conditions for embedding trees
Título de la Revista: SIAM JOURNAL ON DISCRETE MATHEMATICS
Volumen: 33
Número: 3
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2019
Página de inicio: 1521
Página final: 1555
Idioma: English
DOI:

10.1137/18M1210861

Notas: ISI, SCOPUS