DEGREE CONDITIONS FOR EMBEDDING TREES
Abstract
We conjecture that every graph of minimum degree at least k/2 and maximum degree at least 2k contains all trees with k edges as subgraphs. We prove an approximate version of this conjecture for trees of bounded degree and dense host graphs. Our result relies on a general embedding tool for embedding trees into graphs of certain structure. This tool also has implications for the Erdos-Sos conjecture and the 2/3-conjecture. We prove an approximate version of both conjectures for bounded degree trees and dense host graphs.
Más información
| Título según WOS: | DEGREE CONDITIONS FOR EMBEDDING TREES | 
| Título según SCOPUS: | Degree conditions for embedding trees | 
| Título de la Revista: | SIAM JOURNAL ON DISCRETE MATHEMATICS | 
| Volumen: | 33 | 
| Número: | 3 | 
| Editorial: | SIAM PUBLICATIONS | 
| Fecha de publicación: | 2019 | 
| Página de inicio: | 1521 | 
| Página final: | 1555 | 
| Idioma: | English | 
| DOI: | 
 10.1137/18M1210861  | 
| Notas: | ISI, SCOPUS |