Commutative non-power-associative algebras

Arenas M.; Hentzel I.R.; Labra A.

Abstract

We study commutative algebras satisfying the identity (xx)(xx) - lambda((xx)x)x = 0. It is known that for lambda = 1 and for characteristic not 2,3 or 5, the algebra is a commutative power-associative algebra. These algebras have been widely studied by Albert, Gerstenhaber and Schafer. For lambda = 0, Guzzo and Behn in 2014 proved that commutative algebras of dimension <= 7 satisfying (xx)(xx) = 0 are solvable. We consider the remaining values of lambda. We prove that commutative algebras satisfying (xx)(xx)-lambda((xx)x)x = 0 with lambda not equal 0, 1, and generated by one element are nilpotent of nilindex <= 8 (we assume characteristic of the field not equal 2, 3).

Más información

Título según WOS: Commutative non-power-associative algebras
Título según SCOPUS: Commutative non-power-associative algebras
Título de la Revista: INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION
Volumen: 29
Número: 8
Editorial: World Scientific
Fecha de publicación: 2019
Página de inicio: 1527
Página final: 1539
Idioma: English
DOI:

10.1142/S0218196719500619

Notas: ISI, SCOPUS