Invariant measures for actions of congruent monotileable amenable groups
Abstract
In this paper we show that for every congruent monotileable amenable group G and for every metrizable Choquet simplex K, there exists a minimal G-subshift, which is free on a full measure set, whose set of invariant probability measures is affine homeomorphic to K. If the group is virtually abelian, the subshift is free. Congruent monotileable amenable groups are a generalization of amenable residually finite groups. In particular, we show that this class contains all the infinite countable virtually nilpotent groups. This article is a generalization to congruent monotileable amenable groups of one of the principal results shown in [3] for residually finite groups.
Más información
| Título según WOS: | Invariant measures for actions of congruent monotileable amenable groups |
| Título según SCOPUS: | Invariant measures for actions of congruent monotileable amenable groups |
| Título de la Revista: | GROUPS GEOMETRY AND DYNAMICS |
| Volumen: | 13 |
| Número: | 3 |
| Editorial: | EUROPEAN MATHEMATICAL SOC-EMS |
| Fecha de publicación: | 2019 |
| Página de inicio: | 821 |
| Página final: | 839 |
| Idioma: | English |
| DOI: |
10.4171/GGD/506 |
| Notas: | ISI, SCOPUS |