Cancer Cell Sensitivity to Redox-Cycling Quinones is Influenced by NAD(P)H: Quinone Oxidoreductase 1 Polymorphism
Abstract
Background: Cancer cell sensitivity to drugs may be associated with disturbed antioxidant enzymes expression. We investigated mechanisms of resistance by using oxidative stress-resistant MCF-7 breast cancer cells (Resox cells). Since nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase-1 (NQO1) is modified in tumors and oxidative stress-resistant cells, we studied its role in cells exposed to beta-lapachone, menadione, and doxorubicin. Methods: Normal mammary epithelial 250MK, MCF-7, and Resox cells were employed. NQO1 expression and enzyme activity were determined by quantitative polymerase chain reaction (RT-PCR), immunoblotting, and biochemical assays. Dicoumarol and gene silencing (siRNA) were used to modulate NQO1 expression and to assess its potential drug-detoxifying role. MTT (3-(4,5-dimethylthia-zolyl-2)-2,5-diphenyltetrazolium bromide) or clonogenic assays were used to investigate cytotoxicity. NQO1 variants, NQO1*1 (wt), and NQO1*2 (C609T), were obtained by transfecting NQO1-null MDA-MB-231 cell line. Results: Resox cells have higher NQO1 expression than MCF-7 cells. In 250MK cells its expression was low but enzyme activity was higher suggesting a variant NQO1 form in MCF-7 cells. MCF-7 and Resox cells are heterozygous NQO1*1 (wt)/NQO1*2 (C609T). Both NQO1 polymorphism and NQO1 overexpression are main determinants for cell resistance during oxidative stress. NQO1 overexpression increases cell sensitivity to beta-lapachone whereas NQO1*2 polymorphism triggers quinone-based chemotherapies-sensitivity. Conclusions: NQO1 influences cancer cells redox metabolism and their sensitivity to drugs. We suggest that determining NQO1 polymorphism may be important when considering the use of quinone-based chemotherapeutic drugs.
Más información
Título según WOS: | Cancer Cell Sensitivity to Redox-Cycling Quinones is Influenced by NAD(P)H: Quinone Oxidoreductase 1 Polymorphism |
Título según SCOPUS: | Cancer cell sensitivity to redox-cycling quinones is influenced by NAD(P)H: Quinone oxidoreductase 1 polymorphism |
Título de la Revista: | ANTIOXIDANTS |
Volumen: | 8 |
Número: | 9 |
Editorial: | MDPI |
Fecha de publicación: | 2019 |
Idioma: | English |
DOI: |
10.3390/antiox8090369 |
Notas: | ISI, SCOPUS |