ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE BENJAMIN-ONO EQUATION

Muñoz C.; Ponce G.

Abstract

We prove that the limit infimum, as time t goes to infinity, of any uniformly bounded in time H-1 boolean AND L-1 solution to the Benjamin-Ono equation converge to zero locally in an increasing in time region of space of order t/log t. Also for a solution with a mild L-1-norm growth in time, its limit infimum must converge to zero, as time goes to infinity, locally in an increasing on time region of space of order depending of the rate of growth of its L1-norm. In particular, we discard the existence of breathers and other solutions for the BO model moving with a speed "slower" than a soliton.

Más información

Título según WOS: ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE BENJAMIN-ONO EQUATION
Título según SCOPUS: On the asymptotic behavior of solutions to the Benjamin-Ono equation
Título de la Revista: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 147
Número: 12
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2019
Página de inicio: 5303
Página final: 5312
Idioma: English
DOI:

10.1090/proc/14643

Notas: ISI, SCOPUS