Finite element approximation of spectral problems with Neumann boundary conditions on curved domains

Hernandez, E.; Rodriguez, R

Abstract

This paper deals with the finite element approximation of the spectral problem for the Laplace equation with Neumann boundary conditions on a curved nonconvex domain ?. Convergence and optimal order error estimates are proved for standard piecewise linear continuous elements on a discrete polygonal domain ?h ? ? in the framework of the abstract spectral approximation theory.

Más información

Título según WOS: Finite element approximation of spectral problems with Neumann boundary conditions on curved domains
Título según SCOPUS: Finite element approximation of spectral problems with neumann boundary conditions on curved domains
Título de la Revista: MATHEMATICS OF COMPUTATION
Volumen: 72
Número: 243
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2003
Página de inicio: 1099
Página final: 1115
Idioma: English
Notas: ISI, SCOPUS