Finite element approximation of spectral problems with Neumann boundary conditions on curved domains
Abstract
This paper deals with the finite element approximation of the spectral problem for the Laplace equation with Neumann boundary conditions on a curved nonconvex domain ?. Convergence and optimal order error estimates are proved for standard piecewise linear continuous elements on a discrete polygonal domain ?h ? ? in the framework of the abstract spectral approximation theory.
Más información
Título según WOS: | Finite element approximation of spectral problems with Neumann boundary conditions on curved domains |
Título según SCOPUS: | Finite element approximation of spectral problems with neumann boundary conditions on curved domains |
Título de la Revista: | MATHEMATICS OF COMPUTATION |
Volumen: | 72 |
Número: | 243 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2003 |
Página de inicio: | 1099 |
Página final: | 1115 |
Idioma: | English |
Notas: | ISI, SCOPUS |