First-order least-squares method for the obstacle problem
Abstract
We define and analyse a least-squares finite element method for a first-order reformulation of the obstacle problem. Moreover, we derive variational inequalities that are based on similar but non-symmetric bilinear forms. A priori error estimates including the case of non-conforming convex sets are given and optimal convergence rates are shown for the lowest-order case. We provide a posteriori bounds that can be used as error indicators in an adaptive algorithm. Numerical studies are presented.
Más información
| Título según WOS: | First-order least-squares method for the obstacle problem |
| Título según SCOPUS: | First-order least-squares method for the obstacle problem |
| Título de la Revista: | NUMERISCHE MATHEMATIK |
| Volumen: | 144 |
| Número: | 1 |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2020 |
| Página de inicio: | 55 |
| Página final: | 88 |
| Idioma: | English |
| DOI: |
10.1007/s00211-019-01084-0 |
| Notas: | ISI, SCOPUS |