INTERPOLATION INEQUALITIES IN W-1,W-p(S-1) AND CARRE DU CHAMP METHODS
Abstract
This paper is devoted to an extension of rigidity results for nonlinear differential equations, based on carre du champ methods, in the one-dimensional periodic case. The main result is an interpolation inequality with non-trivial explicit estimates of the constants in W-1,W-p(S-1) with p >= 2. Mostly for numerical reasons, we relate our estimates with issues concerning periodic dynamical systems. Our interpolation inequalities have a dual formulation in terms of generalized spectral estimates of Keller-Lieb-Thirring type, where the differential operator is now a p-Laplacian type operator. It is remarkable that the carre du champ method adapts to such a nonlinear framework, but significant changes have to be done and, for instance, the underlying parabolic equation has a nonlocal term whenever p not equal 2.
Más información
Título según WOS: | INTERPOLATION INEQUALITIES IN W-1,W-p(S-1) AND CARRE DU CHAMP METHODS |
Título según SCOPUS: | Interpolation inequalities in W1,p(S1) and Carré du champ methods |
Título de la Revista: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS |
Volumen: | 40 |
Número: | 1 |
Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
Fecha de publicación: | 2020 |
Página de inicio: | 375 |
Página final: | 394 |
Idioma: | English |
DOI: |
10.3934/dcds.2020014 |
Notas: | ISI, SCOPUS |