INTERPOLATION INEQUALITIES IN W-1,W-p(S-1) AND CARRE DU CHAMP METHODS

Dolbeault J.

Abstract

This paper is devoted to an extension of rigidity results for nonlinear differential equations, based on carre du champ methods, in the one-dimensional periodic case. The main result is an interpolation inequality with non-trivial explicit estimates of the constants in W-1,W-p(S-1) with p >= 2. Mostly for numerical reasons, we relate our estimates with issues concerning periodic dynamical systems. Our interpolation inequalities have a dual formulation in terms of generalized spectral estimates of Keller-Lieb-Thirring type, where the differential operator is now a p-Laplacian type operator. It is remarkable that the carre du champ method adapts to such a nonlinear framework, but significant changes have to be done and, for instance, the underlying parabolic equation has a nonlocal term whenever p not equal 2.

Más información

Título según WOS: INTERPOLATION INEQUALITIES IN W-1,W-p(S-1) AND CARRE DU CHAMP METHODS
Título según SCOPUS: Interpolation inequalities in W1,p(S1) and Carré du champ methods
Título de la Revista: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Volumen: 40
Número: 1
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2020
Página de inicio: 375
Página final: 394
Idioma: English
DOI:

10.3934/dcds.2020014

Notas: ISI, SCOPUS