Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives

Abstract

The notions of upper and lower global directional derivatives are introduced for dealing with nonconvex and nonsmooth optimization problems. We provide calculus rules and monotonicity properties for these notions. As a consequence, new formulas for the Dini directional derivatives, radial epiderivatives and generalized asymptotic functions are given in terms of the upper and lower global directional derivatives. Furthermore, a mean value theorem, which extend the well-known Diewert's mean value theorem for radially upper and lower semicontinuous functions, is established. We also provide necessary and sufficient optimality conditions for a point to be a local and/or global solution for the nonconvex minimization problem. Finally, applications for nonconvex and nonsmooth mathematical programming problems are also presented.

Más información

Título según WOS: Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives
Título según SCOPUS: Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 185
Número: 1
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2020
Página de inicio: 134
Página final: 150
Idioma: English
DOI:

10.1007/S10957-019-01613-9

Notas: ISI, SCOPUS