Uniform decay rates for a suspension bridge with locally distributed nonlinear damping

Cavalcanti A.D.D.; Cavalcanti M.M.; Corrêa W.J.; Hajjej Z.; Cortés. M.S.; Asem R.V.

Abstract

We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature we prove the asymptotic stability of the considered model with a minimum amount of damping which represents less cost of material. The result is also numerically proved. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Uniform decay rates for a suspension bridge with locally distributed nonlinear damping
Título según SCOPUS: Uniform decay rates for a suspension bridge with locally distributed nonlinear damping
Título de la Revista: JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS
Volumen: 357
Número: 4
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2020
Página de inicio: 2388
Página final: 2419
Idioma: English
DOI:

10.1016/j.jfranklin.2020.01.004

Notas: ISI, SCOPUS