Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models

Chiarello F.A.; Goatin P.; Villada L.M.

Abstract

This paper focuses on the numerical approximation of the solutions of a class of non-local systems in one space dimension, arising in traffic modeling. We propose alternative simple schemes by splitting the non-local conservation laws into two different equations, namely the Lagrangian and the remap steps. We provide some properties and estimates recovered by approximating the problem with the Lagrangian-antidiffusive remap (L-AR) scheme, and we prove the convergence to weak solutions in the scalar case. Finally, we show some numerical simulations illustrating the efficiency of the L-AR schemes in comparison with classical first- and second-order numerical schemes.

Más información

Título según WOS: Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models
Título según SCOPUS: Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models
Título de la Revista: COMPUTATIONAL & APPLIED MATHEMATICS
Volumen: 39
Número: 2
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2020
Idioma: English
DOI:

10.1007/s40314-020-1097-9

Notas: ISI, SCOPUS