Non-Gaussian geostatistical modeling using (skew) t processes

Caamaño-Carrillo C.; Morales-Oñate V.

Abstract

We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with t marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew-Gaussian process, thus obtaining a process with skew-t marginal distributions. For the proposed (skew) t process, we study the second-order and geometrical properties and in the t case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the t process. Moreover we compare the performance of the optimal linear predictor of the t process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australia.

Más información

Título según WOS: Non-Gaussian geostatistical modeling using (skew) t processes
Título según SCOPUS: Non-Gaussian geostatistical modeling using (skew) t processes
Título de la Revista: SCANDINAVIAN JOURNAL OF STATISTICS
Volumen: 48
Número: 1
Editorial: Wiley
Fecha de publicación: 2020
Idioma: English
DOI:

10.1111/SJOS.12447

Notas: ISI, SCOPUS