Existence and Stability of Periodic Orbits for a Hamiltonian System with Homogeneous Potential of Degree Five

Quispe M.

Abstract

In this paper we consider the autonomous Hamiltonian system with two degrees of freedom associated to the function H = 1/2 (x(2) + y(2)) + 1/2 (p(x)(2) + p(y)(2)) + V-5(x, y), where V-5(x, y) = (A/5x(5) + Bx(3)y(2) + C/5xy(4)) which is related to a homogeneous potential of degree five. We prove the existence of different families of periodic orbits and the type of stability is analyzed through the averaging theory which guarantee the existence of such orbits on adequate sets defined by the parameters A, B, C.

Más información

Título según WOS: Existence and Stability of Periodic Orbits for a Hamiltonian System with Homogeneous Potential of Degree Five
Título según SCOPUS: Existence and Stability of Periodic Orbits for a Hamiltonian System with Homogeneous Potential of Degree Five
Título de la Revista: DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS
Editorial: SPRINGER INDIA
Fecha de publicación: 2020
Idioma: English
DOI:

10.1007/S12591-020-00526-8

Notas: ISI, SCOPUS