On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation
Abstract
We study the mapping properties of boundary integral operators arising when solving two-dimensional, time-harmonic waves scattered by periodic domains. For domains assumed to be at least Lipschitz regular, we propose a novel explicit representation of Sobolev spaces for quasi-periodic functions that allows for an analysis analogous to that of Helmholtz scattering by bounded objects. Except for Rayleigh-Wood frequencies, continuity and coercivity results are derived to prove wellposedness of the associated first kind boundary integral equations.
Más información
Título según WOS: | On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation |
Título según SCOPUS: | On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation |
Título de la Revista: | INTEGRAL EQUATIONS AND OPERATOR THEORY |
Volumen: | 92 |
Número: | 2 |
Editorial: | SPRINGER BASEL AG |
Fecha de publicación: | 2020 |
Idioma: | English |
DOI: |
10.1007/s00020-020-2572-9 |
Notas: | ISI, SCOPUS |