On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation

Aylwin R.; Jerez-Hanckes C.; Pinto J.

Abstract

We study the mapping properties of boundary integral operators arising when solving two-dimensional, time-harmonic waves scattered by periodic domains. For domains assumed to be at least Lipschitz regular, we propose a novel explicit representation of Sobolev spaces for quasi-periodic functions that allows for an analysis analogous to that of Helmholtz scattering by bounded objects. Except for Rayleigh-Wood frequencies, continuity and coercivity results are derived to prove wellposedness of the associated first kind boundary integral equations.

Más información

Título según WOS: On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation
Título según SCOPUS: On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation
Título de la Revista: INTEGRAL EQUATIONS AND OPERATOR THEORY
Volumen: 92
Número: 2
Editorial: SPRINGER BASEL AG
Fecha de publicación: 2020
Idioma: English
DOI:

10.1007/s00020-020-2572-9

Notas: ISI, SCOPUS