On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation
Abstract
We study the mapping properties of boundary integral operators arising when solving two-dimensional, time-harmonic waves scattered by periodic domains. For domains assumed to be at least Lipschitz regular, we propose a novel explicit representation of Sobolev spaces for quasi-periodic functions that allows for an analysis analogous to that of Helmholtz scattering by bounded objects. Except for Rayleigh-Wood frequencies, continuity and coercivity results are derived to prove wellposedness of the associated first kind boundary integral equations.
Más información
| Título según WOS: | On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation |
| Título según SCOPUS: | On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation |
| Título de la Revista: | INTEGRAL EQUATIONS AND OPERATOR THEORY |
| Volumen: | 92 |
| Número: | 2 |
| Editorial: | SPRINGER BASEL AG |
| Fecha de publicación: | 2020 |
| Idioma: | English |
| DOI: |
10.1007/s00020-020-2572-9 |
| Notas: | ISI, SCOPUS |