GLOBALLY ATTRACTIVE MILD SOLUTIONS FOR NON-LOCAL IN TIME SUBDIFFUSION EQUATIONS OF NEUTRAL TYPE
Abstract
We prove the existence of at least one globally attractive mild solution to the equation partial derivative(t) (b * [x -h(., x(.))])(t) + A(x(t) - h (t,x(t))) = f(t, x(t)), t >= 0, under the assumption, among other hypothesis, that A is an almost sectorial operator on a Banach space X and the kernel b belongs to a large class, which covers many relevant cases from physics applications, in particular the important case of time- fractional evolution equations of neutral type.
Más información
Título según WOS: | GLOBALLY ATTRACTIVE MILD SOLUTIONS FOR NON-LOCAL IN TIME SUBDIFFUSION EQUATIONS OF NEUTRAL TYPE |
Título según SCOPUS: | Globally attractive mild solutions for non-local in time subdiffusion equations of neutral type |
Título de la Revista: | TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS |
Volumen: | 55 |
Número: | 1 |
Editorial: | NICOLAUS COPERNICUS UNIV TORUN, JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
Fecha de publicación: | 2020 |
Página de inicio: | 85 |
Página final: | 103 |
Idioma: | English |
DOI: |
10.12775/TMNA.2019.061 |
Notas: | ISI, SCOPUS |