GLOBALLY ATTRACTIVE MILD SOLUTIONS FOR NON-LOCAL IN TIME SUBDIFFUSION EQUATIONS OF NEUTRAL TYPE
Abstract
We prove the existence of at least one globally attractive mild solution to the equation partial derivative(t) (b * [x -h(., x(.))])(t) + A(x(t) - h (t,x(t))) = f(t, x(t)), t >= 0, under the assumption, among other hypothesis, that A is an almost sectorial operator on a Banach space X and the kernel b belongs to a large class, which covers many relevant cases from physics applications, in particular the important case of time- fractional evolution equations of neutral type.
Más información
| Título según WOS: | GLOBALLY ATTRACTIVE MILD SOLUTIONS FOR NON-LOCAL IN TIME SUBDIFFUSION EQUATIONS OF NEUTRAL TYPE |
| Título según SCOPUS: | Globally attractive mild solutions for non-local in time subdiffusion equations of neutral type |
| Título de la Revista: | TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS |
| Volumen: | 55 |
| Número: | 1 |
| Editorial: | NICOLAUS COPERNICUS UNIV TORUN, JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
| Fecha de publicación: | 2020 |
| Página de inicio: | 85 |
| Página final: | 103 |
| Idioma: | English |
| DOI: |
10.12775/TMNA.2019.061 |
| Notas: | ISI, SCOPUS |