GLOBALLY ATTRACTIVE MILD SOLUTIONS FOR NON-LOCAL IN TIME SUBDIFFUSION EQUATIONS OF NEUTRAL TYPE

Abstract

We prove the existence of at least one globally attractive mild solution to the equation partial derivative(t) (b * [x -h(., x(.))])(t) + A(x(t) - h (t,x(t))) = f(t, x(t)), t >= 0, under the assumption, among other hypothesis, that A is an almost sectorial operator on a Banach space X and the kernel b belongs to a large class, which covers many relevant cases from physics applications, in particular the important case of time- fractional evolution equations of neutral type.

Más información

Título según WOS: GLOBALLY ATTRACTIVE MILD SOLUTIONS FOR NON-LOCAL IN TIME SUBDIFFUSION EQUATIONS OF NEUTRAL TYPE
Título según SCOPUS: Globally attractive mild solutions for non-local in time subdiffusion equations of neutral type
Título de la Revista: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS
Volumen: 55
Número: 1
Editorial: NICOLAUS COPERNICUS UNIV TORUN, JULIUSZ SCHAUDER CTR NONLINEAR STUDIES
Fecha de publicación: 2020
Página de inicio: 85
Página final: 103
Idioma: English
DOI:

10.12775/TMNA.2019.061

Notas: ISI, SCOPUS