Behavior of the Hermite sheet with respect to the Hurst index
Keywords: self-similarity, fractional brownian motion, rosenblatt process, multiple stochastic integrals, Cumulants, Hermite process, Wiener chaos, Multiparameter stochastic processes
Abstract
We consider a d-parameter Hermite process with Hurst index H = (H-1, . . , H-d) is an element of (1/2, 1)(d) and we study its limit behavior in distribution when the Hurst parameters H-i, i = 1, . . , d (or a part of them) converge to 1/2 and/or 1. The limit obtained is Gaussian (when at least one parameter tends to 1/2) and non-Gaussian (when at least one-parameter tends to 1 and none converges to 1/2). (C) 2018 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Behavior of the Hermite sheet with respect to the Hurst index |
Título de la Revista: | STOCHASTIC PROCESSES AND THEIR APPLICATIONS |
Volumen: | 129 |
Número: | 7 |
Editorial: | Elsevier |
Fecha de publicación: | 2019 |
Página de inicio: | 2582 |
Página final: | 2605 |
Idioma: | English |
DOI: |
10.1016/j.spa.2018.07.017 |
Notas: | ISI |