LocalBoost: A Parallelizable Approach to Boosting Classifiers

Valle, C; Nanculef, R; Allende, H; Moraga, C

Keywords: classification, parallel algorithms, adaboost, ensemble learning, Learning architectures

Abstract

Ensemble learning is an active field of research with applications to a broad range of problems. Adaboost is a widely used ensemble approach, however, its computational burden is high because it uses an explicit diversity method for building the individual learners. To address this issue, we present a variant of Adaboost where the learners can be trained in parallel, exchanging information on a sparse collaborative communication that restricts the visibility among them. Experiments on 12 UCI datasets show that this approach is competitive in terms of generalization error but more efficient than Adaboost and two other parallel approximations of this algorithm.

Más información

Título según WOS: LocalBoost: A Parallelizable Approach to Boosting Classifiers
Título de la Revista: NEURAL PROCESSING LETTERS
Volumen: 50
Número: 1
Editorial: Springer
Fecha de publicación: 2019
Página de inicio: 19
Página final: 41
Idioma: English
DOI:

10.1007/s11063-018-9924-3

Notas: ISI