Cosmic dance in the Shapley Concentration Core I. A study of the radio emission of the BCGs and tailed radio galaxies

Di Gennaro, G.; Venturi, T.; Dallacasa, D.; Giacintucci, S.; Merluzzi, P.; Busarello, G.; Mercurio, A.; Bardelli, S.; Gastaldello, F.; Grado, A.; Haines, C. P.; Limatola, L.; Rossetti, M.

Abstract

Context. The Shapley Concentration ( z > approximate to 0.048) covers several degrees in the southern hemisphere, and includes galaxy clusters in advanced evolutionary stages, groups of clusters in the very early stages of merger, fairly massive clusters with ongoing accretion activity, and smaller groups located in filaments in the regions between the main clusters. Aims. With the goal to investigate the role of cluster mergers and accretion on the radio galaxy population, we performed a multi-wavelength study of the brightest cluster galaxies (BCGs) and of the galaxies showing extended radio emission in the cluster complexes of Abell 3528 and Abell 3558. In total, our study is based on a sample of 12 galaxies. Methods. We observed the clusters with the Giant Metrewave Radio Telescope (GMRT) at 235, 325, and 610 MHz, and with the Very Large Array (VLA) at 8.46 GHz. We complemented our study with the TIFR GMRT Sky Survey (TGSS) at 150 MHz, the Sydney University Molonglo Sky Survey (SUMSS) at 843 MHz, and the Australia Telescope Compact array (ATCA) at 1380, 1400, 2380, and 4790MHz data. Finally, optical imaging with the VLT Survey Telescope (VST) is also available for the host galaxies as well as the mid-infrared coverage with the Wide-Field Infrared Survey Explorer (WISE). Results. We found significant differences in the properties of the radio emission of the BCGs in the two cluster complexes. The BCGs in the A3528 complex and in A3556, which are relaxed cool-core objects, are powerful active radio galaxies. They also present hints of restarted activity. On the contrary, the BCGs in A3558 and A3562, which are well-known merging systems, are very faint, or quiet, in the radio band. The optical and infrared properties of the galaxies, on the other hand, are fairly similar in the two complexes, showing all passive red galaxies. Conclusions. Our study shows remarkable differences in the radio properties of the BGCs, which we relate to the different dynamical state of the host cluster. On the contrary, the lack of changes between such different environments in the optical band suggests that the dynamical state of galaxy clusters does not affect the optical counterparts of the radio galaxies, at least over the lifetime of the radio emission.

Más información

Título según WOS: ID WOS:000451110200005 Not found in local WOS DB
Título de la Revista: ASTRONOMY AND ASTROPHYSICS
Volumen: 620
Editorial: EDP Sciences
Fecha de publicación: 2018
DOI:

10.1051/0004-6361/201832801

Notas: ISI